Question Number	Answer	Additional Guidance	Mark
1(a)(i)	B (are R and S) ;		(1)

Question Number	Answer	Additional Guidance	Mark
1(a)(ii)	C (is P only) ;		(1)

Question Number	Answer	Additional Guidance	Mark
1(b)	 glycerol plus three fatty acids as reactants ; ester bond labelled ; water shown ; 	2 ACCEPT an ester bond drawn out correctly even if not labelled	(3)

Question Number	Answer	Additional Guidance	Mark
1(c)(i)	condensation / polymerisation ;	ACCEPT polymerization	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)(ii)	glycosidic / 1,4 glycosidic ;	ACCEPT glycoside ACCEPT missing commas and commas replaced with dashes NOT 1,6 glycosidic IGNORE link or bond	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)(iii)	Amylose is {coiled / unbranched / eq } / amylose has only 1,4 (glycosidic) bonds / eq ;	ACCEPT glycogen is not coiled / branched / has 1,4 and 1,6 glycosidic bonds	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)(iv)	1. contain glucose / eq ;	ACCEPT if each described separately but allow each Mp once only 1. ACCEPT can be hydrolysed / broken down to release glucose	
	 idea that they are compact so large {numbers of glucose / amylose / glycogen } molecules can fit into a small volume ; 	2. ACCEPT large amounts of energy in a small volume	
	3. insoluble therefore {does not affect osmosis / eq } ;	3. IGNORE insoluble so will not	
	 large molecules therefore { remains in cells / too big to diffuse / eq}; 		(2)

Question Number	Answer	Mark
2 (a)(i)	A a hydrogen bond ;	(1)

Question Number	Answer	Mark
2 (a)(ii)	D a peptide bond ;	(1)

Question	Answer	Mark
Number		
2 (a)(iii)	D glucose ;	(1)

Question	Answer	Mark
Number		
2 (a)(iv)	C glycerol ;	(1)
1		

Question Number	Answer	Additional Guidance	Mark
2 (b)	nitrogen ;	IGNORE N if it is the only	(1)
		response	
Question	Answer	Additional Guidance	Mark
Number			
2 (c)	1. glycosidic bond correctly drawn ;	1. IGNORE labelling of bond	
	2. molecule of water shown to be produced ;	2. ACCEPT water named or	
	a	formula	
	3. remaining groups around disaccharide drawn		
	correctly ;	3. DO NOT ACCEPT two	(3)
		separate glucose molecules	
		NB: check carefully H on C5	

Question	Answer	Additional Guidance	Mark
2 (d)	 idea that water can form {hydrogen bonds / eq}; and any one from 	 ACCEPT water is slightly charged, description of charges on O and /or H IGNORE polar/ dipole as stated in Q stem 	
	 water is a solvent / {ions / polar molecules / eq } can {dissolve / be transported / eq } in water reference to cohesion/adhesion 	 ACCEPT named polar molecule IGNORE non polar molecules dissolving ACCEPT specific example e.g. surface tension on a pond 	
	 idea of hydrogen bonds holding water together as a liquid, so that it can move in mass flow systems suitable ref. to specific heat capacity idea of distribution of thermal energy around body 	5. ACCEPT thermal buffer / needs a lot of energy to change the temperature / eq	(2)
	7. reference to high latent heat of vaporisation ;	IGNORE pH buffer	

Question	Answer	Comments	Mark
Number			
3(a)	 Answer (QWC- Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. (a) glucose; 2. glycosidic {bonds / links}; 3. amylose and amylopectin ; 4. amylose has 1- 4 (glycosidic) {bonds / links} AND amylopectin has 1- 4 and 1- 6 (glycosidic) bonds / eq; 5. amylose is {spiralled / coiled}; 6. amylopectin is branched / eq; 	QWC spelling of words in italics should be correct. Penalise just once – ALLOW max score of 5 if 6 mpts met but one lost due to spelling mistake.	
	7. compact <i>molecule /</i> eq ;		(5)

Question Number	Answer	Additional guidance	Mark
3(b)(i)	 speeds up the rate of reaction / eq ; 		
	 without being {changed/used up / eq}; 		
	 lowers activation energy / provides an alternative reaction pathway / eq ; 		
	 4. does not change {products / position of equilibrium / eq } / eq ; 		(2)

Question Number	Answer	Additional guidance	Mark
3(b)(ii)	 breaks the (glycosidic) bonds / eq ; 	1. IG RE hydrogen bonds	
	 reference to use of water ; 	2. NOT makes water / eq	(2)

Question Number	Answer	Additional guidance	Mark
3 (c)	<pre>idea that { maltose / disaccharide / glucose / monosaccharide} {is produced / tastes sweet} ;</pre>	ALLOW dextrins / sugar NOT any other named sugar eg sucrose	(1)

Question Number	Answer	Additional guidance	Mark
4(a)(i)	 eukaryote cells have { membrane bound organelles / examples of membrane bound organelle } and prokaryotes do not ; 	1. e.g. nucleus	
	 DNA within a nucleus in Eukaryota but not in Bacteria / linear chromosomes in Eukaryota circular in Bacteria ; 		
	 larger ribosomes in Eukaryota / 80S ribosomes in Eukaryota and 70S in Bacteria / eq ; 		
	 Bacteria contain { plasmids / pili / peptidoglycan cell wall /eq } and Eukaryota do not ; 	4. CCEPT mesosomes	(2)

Question	Answer	Mark
Number		
4(a)(ii)	ribosomes ;	(1)

Question	Answer	Mark
Number		
4(b)(i)		(1)
	rough endoplasmic reticulum / rER / RER ;	

Question	Answer	Mark
Number		
4(b)(ii)		(1)
	A – Golgi apparatus 🔅	

Question Number	Answer	Additional guidance	Mark
4(b)(iii)	*QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence.	*QWC - Emphasis is spelling ACCEPT X, Y, Z where appropriate.	
	 reference to involvement of <i>ribosomes</i> on the { rER / rough endoplasmic reticulum } ; 		
	 amino acids { being joined by peptide bonds / forming polypeptide chains / forming primary structure of protein }; 		
	OR		
	{folded into 3-D shape / <i>secondary</i> or <i>tertiary</i> structure} in rER ;		
	 packaged into vesicles at the end of the rER / vesicles {move to / transported to / fuse with / eq} the Golgi apparatus; 		
	 idea that { protein/ enzyme } modified in Golgi apparatus; 		
	 (modified protein / enzyme / eq) packaged into (secretory) vesicles (by Golgi apparatus) / eq ; 		
	 exocytosis by secretory vesicles / fusion of vesicles with cell (surface) membrane / eq ; 		(4)

Question Number	Answer	Additional guidance	Mark
4(c)	 different shape molecule requires different enzymes / reference to active site having to have different shape ; 		
	2. cellulose is made of β glucose and starch is made of a glucose / eq ;		
	3. 1,6 glycosidic bonds only in starch ;		
	4. starch made of amylose and amylopectin ;		
	 cellulose is linear / starch is {branched / helical / eq} / eq ; 		
			(4)